Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 232(3): 1297-1310, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34176137

RESUMEN

Hydraulic conductance is recognized as a major determinant of gas exchange and productivity. However, whether this also applies to seedlings, a critically important stage for vegetation regeneration, has been largely unknown. We analyzed the hydraulic and stomatal conductance of leaves and shoots for 6-wk-old Acer pseudoplatanus seedlings emerging in different lowland and treeline habitats and under glasshouse conditions, respectively, as well as on 9-, 15- and 18-wk-old plants, and related findings to leaf and xylem anatomical traits. Treeline seedlings had higher leaf area-specific shoot hydraulic conductance (Kshoot-L ), and stomatal conductance (gs ), associated with wider xylem conduits, lower leaf area and higher stomatal density than lowland and glasshouse-grown plants. Across the first 18 wk of development, seedlings increased four-fold in absolute shoot hydraulic conductance (Kshoot ) and declined by half in Kshoot-L , with correlated shifts in xylem and leaf anatomy. Distal leaves had higher leaf hydraulic conductance (Kleaf ) and gs compared to basal leaves. Seedlings show strong variation across growth environments and ontogenetic shifts in hydraulic and anatomical parameters. Across growth sites, ontogenetic stages and leaf orders, gs was tightly correlated with Kshoot-L and Kleaf , balancing hydraulic supply with demand for the earliest stages of seedling establishment.


Asunto(s)
Acer , Plantones , Hojas de la Planta , Estomas de Plantas , Árboles , Agua , Xilema
2.
New Phytol ; 231(1): 108-121, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33811346

RESUMEN

Nonstructural carbohydrates (NSCs) have been suggested to affect xylem transport under fluctuating water availability, but conclusive evidence is still lacking. We tested the effect of shade-induced NSC depletion on xylem vulnerability to embolism and hydraulic recovery on Populus nigra saplings. Vulnerability was assessed in light-exposed (L) and shaded (S) plants with the hydraulic method, and in vivo with the optical method and X-ray micro-computed tomography. Plants were stressed to 80% loss of hydraulic conductance (PLC) and re-irrigated to check for possible recovery. We measured PLC, bark and wood NSC content, as well as xylem sap pH, surface tension (γsap ) and sugar concentration, before, during and after drought. Shading induced depletion of stem NSC (mainly starch) reserves. All methods converged in indicating higher xylem vulnerability in S than in L plants. This difference was not explained by xylem vessel and pit anatomy or by γsap . Shading impeded sap acidification and sugar accumulation during drought in S plants and prevented hydraulic recovery, which was observed in L plants. Our results highlight the importance of stem NSCs to sustain xylem hydraulic functioning during drought and suggest that light and/or adequate stem NSC thresholds are required to trigger xylem sap chemical changes involved in embolism recovery.


Asunto(s)
Embolia , Populus , Carbohidratos , Sequías , Agua , Microtomografía por Rayos X , Xilema
3.
Tree Physiol ; 40(12): 1668-1679, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32785622

RESUMEN

The performance and distribution of woody species strongly depend on their adjustment to environmental conditions based on genotypic and phenotypic properties. Since more intense and frequent drought events are expected due to climate change, xylem hydraulic traits will play a key role under future conditions, and thus, knowledge of hydraulic variability is of key importance. In this study, we aimed to investigate the variability in hydraulic safety and efficiency of the conifer shrub Juniperus communis based on analyses along an elevational transect and a common garden approach. We studied (i) juniper plants growing between 700 and 2000 m a.s.l. Innsbruck, Austria, and (ii) plants grown in the Innsbruck botanical garden (Austria) from seeds collected at different sites across Europe (France, Austria, Ireland, Germany and Sweden). Due to contrasting environmental conditions at different elevation and provenance sites and the wide geographical study area, pronounced variation in xylem hydraulics was expected. Vulnerability to drought-induced embolisms (hydraulic safety) was assessed via the Cavitron and ultrasonic acoustic emission techniques, and the specific hydraulic conductivity (hydraulic efficiency) via flow measurements. Contrary to our hypothesis, relevant variability in hydraulic safety and efficiency was neither observed across elevations, indicating a low phenotypic variation, nor between provenances, despite expected genotypic differences. Interestingly, the provenance from the most humid and warmest site (Ireland) and the northernmost provenance (Sweden) showed the highest and the lowest embolism resistance, respectively. The hydraulic conductivity was correlated with plant height, which indicates that observed variation in hydraulic traits was mainly related to morphological differences between plants. We encourage future studies to underlie anatomical traits and the role of hydraulics for the broad ecological amplitude of J. communis.


Asunto(s)
Juniperus , Austria , Sequías , Europa (Continente) , Francia , Alemania , Juniperus/genética , Agua , Xilema
4.
New Phytol ; 226(1): 13-20, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31677276

RESUMEN

During winter, timberline trees are exposed to drought and frost, factors known to induce embolism. Studies indicated that conifers cope with winter embolism by xylem refilling. We analysed the loss of hydraulic conductivity (LC) in Picea abies branch xylem over 10 years, and correlated winter embolism to climate parameters. LC was investigated by direct X-ray micro-computer tomography (micro-CT) observations and potential cavitation fatigue by Cavitron measurements. Trees showed up to 100% winter embolism, whereby LC was highest, when climate variables indicated frost drought and likely freeze-thaw stress further increased LC. During summer, LC never exceeded 16%, due to hydraulic recovery. Micro-CT revealed homogenous embolism during winter and that recovery was based on xylem refilling. Summer samples exhibited lower LC in outermost compared to older tree rings, although no cavitation fatigue was detected. Long-term data and micro-CT observations demonstrate that timberline trees can survive annual cycles of pronounced winter-embolism followed by xylem refilling. Only a small portion of the xylem conductivity cannot be restored during the first year, while remaining conduits are refilled without fatigue during consecutive years. We identify important research topics to better understand the complex induction and repair of embolism at the timberline and its relevance to general plant hydraulics.


Asunto(s)
Embolia , Tracheophyta , Humanos , Tallos de la Planta , Estaciones del Año , Agua , Xilema
5.
J Exp Bot ; 70(6): 1915-1925, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30793193

RESUMEN

Fertilization of woody plants plays a central role in agriculture and forestry, but little is known about how plant water relations are thereby affected. Here we investigated the impact of fertilization on tree hydraulics, and xylem and pit anatomy in the high-yield apple cultivars Golden and Red Delicious. In fertilized trees of Golden Delicious, specific hydraulic conductivity of branch xylem, hydraulic conductance of the root system, and maximum stomatal conductance increased considerably. In Red Delicious, differences between fertilized and control trees were less pronounced. In both cultivars, xylem embolism resistance of fertilized trees was significantly lower and stomatal closure occurred at lower water potentials. Furthermore, water potential at turgor loss point and osmotic potential at full saturation were higher and cell wall elasticity was lower in fertilized plants, suggesting reduced drought tolerance of leaves. Anatomical differences were observed regarding conduit diameters, cell wall reinforcement, pit membrane thickness, pit chamber depth, and stomatal pore length, with more pronounced differences in Golden Delicious. The findings reveal altered hydraulic behaviour in both apple cultivars upon fertilization. The increased vulnerability to hydraulic failure might pose a considerable risk for apple productivity under a changing climate, which should be considered for future cultivation and management practices.


Asunto(s)
Fertilizantes/análisis , Malus/fisiología , Agua/metabolismo , Xilema/fisiología , Cambio Climático , Sequías , Ósmosis , Árboles/fisiología , Xilema/metabolismo
6.
J Exp Bot ; 70(10): 2811-2822, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30796444

RESUMEN

Lianas form long and flexible but disproportionately narrow stems, and thus require particular strategies to maintain the integrity of xylem water transport and ensure supply to large crown areas. The hydraulic architecture of lianas and the respective within-plant coordination of transport efficiency and safety, and the underlying anatomical variations in xylem, are largely unexplored. We analysed Hedera helix, a liana widespread in European temperate forests, with respect to hydraulic and xylem anatomical variations between the main stem and branches, between juvenile and adult life phases, and along the vertical axis. Main stems were significantly less embolism resistant but exhibited a higher hydraulic conductivity than branches. In branches, the cell turgor loss point of leaves decreased, while the embolism resistance and conductivity of xylem, as well as conduit diameters, increased with height. High water-transport capacities allow ivy to compensate for the small cross-section of stems, while the limited resistance to drought-induced xylem dysfunction of the main stem is probably linked to conservative stomatal regulation. Pronounced differences in xylem anatomy, hydraulic efficiency, and safety between the main stem and branches and along the vertical axis are surprisingly similar to those of self-supporting plants, and indicate that the coordination of carbon and water economies requires similar internal adjustments in tall plants.


Asunto(s)
Transporte Biológico/fisiología , Hedera/anatomía & histología , Hedera/fisiología , Xilema/anatomía & histología , Fenómenos Biomecánicos , Sequías , Hedera/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/fisiología
7.
New Phytol ; 221(4): 1831-1842, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30347122

RESUMEN

The seedling stage is the most susceptible one during a tree's life. Water relations may be crucial for seedlings due to their small roots, limited water buffers and the effects of drought on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce as respective methodical approaches are limited. Micro-CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to different water potentials (Ψ) allowed the simultaneous observation of gas-filled versus water-filled conduits and the calculation of percentage loss of conductivity (PLC) in stems, roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed and stem PLC measured with hydraulic techniques. In A. pseudoplatanus, petioles showed a higher Ψ at 50% PLC (Ψ50 -1.13MPa) than stems (-2.51 MPa) and roots (-1.78 MPa). The main leaf veins of F. sylvatica had similar Ψ50 values (-2.26 MPa) to stems (-2.74 MPa) and roots (-2.75 MPa). In both species, no difference between root and stems was observed. Hydraulic measurements on stems closely matched the micro-CT based PLC calculations. Micro-CT analyses indicated a species-specific hydraulic architecture. Vulnerability segmentation, enabling a disconnection of the hydraulic pathway upon drought, was observed in A. pseudoplatanus but not in the especially shade-tolerant F. sylvatica. Hydraulic patterns could partly be related to xylem anatomical traits.


Asunto(s)
Acer/fisiología , Fagus/fisiología , Plantones/fisiología , Acer/anatomía & histología , Fagus/anatomía & histología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Tallos de la Planta/fisiología , Plantones/anatomía & histología , Especificidad de la Especie , Microtomografía por Rayos X , Xilema/fisiología
8.
Tree Physiol ; 38(8): 1088-1097, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29920598

RESUMEN

As a tree grows taller, the increase in gravitational pressure and path length resistance results in lower water potentials at a given flow rate and higher carbon construction costs to transport a given amount of water to the leaves. We investigated how hydraulic safety and efficiency are coordinated under the constraints of higher cavitation risks and higher carbon construction costs with increasing tree height. We combined measurements of xylem tracheid anatomical traits with the vulnerability to drought-induced embolism and hydraulic conductivity of the apical shoots of 2- to 37-m tall Picea abies trees growing at two sites in the Dolomites (Italian Eastern Alps). We found that the theoretical hydraulic conductivity of the apical shoots increased with tree height at both sites (P < 0.001) as a result of an increase in either total tracheid number or mean hydraulic diameter. The xylem water potential inducing 50% loss of apical conductance significantly increased from small (-4.45 ± 0.20 MPa) to tall trees (-3.65 ± 0.03 MPa) (P = 0.007). The more conductive xylem at the treetop of taller trees allows the full compensation for the height-related hydraulic constraints and minimizes the additional carbon costs of transporting water over a longer path length. The corresponding increase in vulnerability to cavitation shows that hydraulic efficiency is prioritized over safety during height growth.


Asunto(s)
Picea/anatomía & histología , Picea/fisiología , Xilema/anatomía & histología , Xilema/fisiología , Aclimatación , Italia , Picea/crecimiento & desarrollo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Agua/fisiología , Xilema/crecimiento & desarrollo
9.
Tree Physiol ; 38(2): 198-211, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29177459

RESUMEN

Decreasing water availability due to climate change poses the question of whether and to what extent tree species are able to hydraulically acclimate and how hydraulic traits of stems and leaves are coordinated under drought. In a through-fall exclusion experiment, hydraulic acclimation was analyzed in a mixed forest stand of Fagus sylvatica L. and Picea abies (L.) Karst. In drought-stressed (TE, through-fall exclusion over 2 years) and control (CO) trees, hydraulic vulnerability was studied in branches as well as in leaves (F. sylvatica) and end-twigs (P. abies, entirely formed during the drought period) sampled at the same height in sun-exposed portions of the tree crown. In addition, relevant xylem anatomical traits and leaf pressure-volume relations were analyzed. The TE trees reached pre-dawn water potentials down to -1.6 MPa. In both species, water potentials at 50% loss of xylem hydraulic conductivity were ~0.4 MPa more negative in TE than in CO branches. Foliage hydraulic vulnerability (expressed as water potential at 50% loss of leaf/end-twig hydraulic conductance) and water potential at turgor loss point were also, respectively, 0.4 and 0.5 MPa lower in TE trees. Minor differences were observed in conduit mean hydraulic diameter and cell wall reinforcement. Our findings indicate significant and fast hydraulic acclimation under relatively mild drought in both tree species. Acclimation was well coordinated between branches and foliage, which might be essential for survival and productivity of mature trees under future drought periods.


Asunto(s)
Cambio Climático , Fagus/fisiología , Picea/fisiología , Xilema/fisiología , Aclimatación , Alemania , Hojas de la Planta/fisiología , Brotes de la Planta/fisiología
10.
Plant Physiol ; 175(3): 1135-1143, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28982780

RESUMEN

The surface tension (γ) of xylem sap plays a key role in stabilizing air-water interfaces at the pits between water- and gas-filled conduits to avoid air seeding at low water potentials. We studied seasonal changes in xylem sap γ in Picea abies and Pinus mugo growing at the alpine timberline. We analyzed their vulnerability to drought-induced embolism using solutions of different γ and estimated the potential effect of seasonal changes in γ on hydraulic vulnerability. In both species, xylem sap γ showed distinct seasonal courses between about 50 and 68 mn m-1 Solutions with low γ caused higher vulnerability to drought-induced xylem embolism. The water potential at 50% loss of hydraulic conductivity in P. abies and P. mugo was -3.35 and -3.86 MPa at γ of 74 mn m-1 but -2.11 and -2.09 MPa at 45 mn m-1 This indicates up to about 1 MPa seasonal variation in 50% loss of hydraulic conductivity. The results revealed pronounced effects of changes in xylem sap γ on the hydraulic safety of trees in situ. These effects also are relevant in vulnerability analyses, where the use of standard solutions with high γ overestimates hydraulic safety. Thus, γ should be considered carefully in hydraulic studies.


Asunto(s)
Pinus/fisiología , Exudados de Plantas/fisiología , Agua/fisiología , Xilema/fisiología , Sequías , Concentración Osmolar , Perfusión , Estaciones del Año , Soluciones , Tensión Superficial
11.
Funct Plant Biol ; 44(6): 587-596, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480590

RESUMEN

Temperate angiosperm species show pronounced annual patterns in xylem embolism. In this study, we investigated whether high-yield cultivars of Malus domestica Borkh. growing under optimised soil water conditions follow similar patterns to wild-type plants, and evaluated crucial factors for the formation of winter embolism and the subsequent restoration of the hydraulic system in spring. In five different cultivars growing at three different sites, various hydraulic and microclimatic parameters were monitored over three successive years. In all cultivars on all sites and in all years, the percentage loss of hydraulic conductivity (PLC) increased in autumn with freeze-thaw events and accumulated over winter. Maximum values were reached in late winter and differed significantly among cultivars. In spring, the hydraulic system was restored and PLC remained negligible during summer. Embolism formation in autumn was significantly correlated with the occurrence of freeze-thaw events, whereas further conductivity losses over winter were related to winter desiccation and influenced by climatic and cultivar-specific parameters. Restoration of the hydraulic system in spring was strongly linked to a decrease in the starch content of wood and buds, and soil temperature. Despite high soil water availability, hydraulic recovery took several weeks and was not completed before bud break. Spring is thus a critical phase for temperate angiosperms, especially for high-yield cultivars with risky hydraulic strategies.

12.
Glob Chang Biol ; 23(4): 1675-1690, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27759919

RESUMEN

Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.


Asunto(s)
Escarabajos , Sequías , Árboles/crecimiento & desarrollo , Animales , Carbono , Estrés Fisiológico
13.
Front Plant Sci ; 7: 867, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379146

RESUMEN

Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.

14.
Plant Physiol ; 170(4): 2085-94, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26896395

RESUMEN

The requirements of the water transport system of small herbaceous species differ considerably from those of woody species. Despite their ecological importance for many biomes, knowledge regarding herb hydraulics remains very limited. We compared key hydraulic features (vulnerability to drought-induced hydraulic decline, pressure-volume relations, onset of cellular damage, in situ variation of water potential, and stomatal conductance) of three Ranunculus species differing in their soil humidity preferences and ecological amplitude. All species were very vulnerable to water stress (50% reduction in whole-leaf hydraulic conductance [kleaf] at -0.2 to -0.8 MPa). In species with narrow ecological amplitude, the drought-exposed Ranunculus bulbosus was less vulnerable to desiccation (analyzed via loss of kleaf and turgor loss point) than the humid-habitat Ranunculus lanuginosus Accordingly, water stress-exposed plants from the broad-amplitude Ranunculus acris revealed tendencies toward lower vulnerability to water stress (e.g. osmotic potential at full turgor, cell damage, and stomatal closure) than conspecific plants from the humid site. We show that small herbs can adjust to their habitat conditions on interspecific and intraspecific levels in various hydraulic parameters. The coordination of hydraulic thresholds (50% and 88% loss of kleaf, turgor loss point, and minimum in situ water potential) enabled the study species to avoid hydraulic failure and damage to living cells. Reversible recovery of hydraulic conductance, desiccation-tolerant seeds, or rhizomes may allow them to prioritize toward a more efficient but vulnerable water transport system while avoiding the severe effects that water stress poses on woody species.


Asunto(s)
Ranunculus/fisiología , Agua/metabolismo , Ritmo Circadiano , Hojas de la Planta/fisiología , Ranunculus/citología , Suelo/química , Especificidad de la Especie
15.
Tree Physiol ; 36(6): 797-803, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26705311

RESUMEN

A prerequisite for reliable hydraulic measurements is an accurate collection of the plant material. Thereby, the native hydraulic state of the sample has to be preserved during harvesting (i.e., cutting the plant or plant parts) and preparation (i.e., excising the target section). This is particularly difficult when harvesting has to be done under transpiring conditions. In this article, we present a harvesting and sampling protocol designed for hydraulic measurements on Malus domestica Borkh. and checked for possible sampling artefacts. To test for artefacts, we analysed the percentage loss of hydraulic conductivity, maximum specific conductivity and water contents of bark and wood of branches, taking into account conduit length, time of day of harvesting, different shoot ages and seasonal effects. Our results prove that use of appropriate protocols can avoid artefactual embolization or refilling even when the xylem is under tension at harvest. The presented protocol was developed for Malus but may also be applied for other angiosperms with similar anatomy and refilling characteristics.


Asunto(s)
Malus/metabolismo , Tallos de la Planta/metabolismo , Agua/metabolismo , Xilema/metabolismo
16.
New Phytol ; 208(2): 625-32, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26010417

RESUMEN

Acoustic emission (AE) analysis allows nondestructive monitoring of embolism formation in plant xylem, but signal interpretation and agreement of acoustically measured hydraulic vulnerability with reference hydraulic techniques remain under debate. We compared the hydraulic vulnerability of 16 species and three crop tree cultivars using hydraulic flow measurements and acoustic emission monitoring, proposing the use of time-dependent AE rates as a novel parameter for AE analysis. There was a linear correlation between the water potential (Ψ) at 50% loss of hydraulic conductivity (P50 ) and the Ψ at maximum AE activity (Pmaxrate ), where species with lower P50 also had lower Pmaxrate (P < 0.001, R(2)  = 0.76). Using AE rates instead of cumulative counts for AE analysis allows more efficient estimation of P50 , while excluding problematic AE at late stages of dehydration.


Asunto(s)
Acústica , Xilema/fisiología , Factores de Tiempo , Agua
17.
Plant Cell Environ ; 37(9): 2151-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24697679

RESUMEN

The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (-19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions.


Asunto(s)
Pinus sylvestris/fisiología , Pinus/fisiología , Tallos de la Planta/fisiología , Estrés Fisiológico , Agua/fisiología , Xilema/fisiología , Austria , Sequías
18.
Physiol Plant ; 152(3): 465-74, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24611594

RESUMEN

Different methods have been devised to analyze vulnerability to cavitation of plants. Although a good agreement between them is usually found, some discrepancies have been reported when measuring samples from long-vesseled species. The aim of this study was to evaluate possible artifacts derived from different methods and sample sizes. Current-year shoot segments of mature olive trees (Olea europaea), a long-vesseled species, were used to generate vulnerability curves (VCs) by bench dehydration, pressure collar and both static- and flow-centrifuge methods. For the latter, two different rotors were used to test possible effects of the rotor design on the curves. Indeed, high-resolution computed tomography (HRCT) images were used to evaluate the functional status of xylem at different water potentials. Measurements of native embolism were used to validate the methods used. The pressure collar and the two centrifugal methods showed greater vulnerability to cavitation than the dehydration method. The shift in vulnerability thresholds in centrifuge methods was more pronounced in shorter samples, supporting the open-vessel artifact hypothesis as a higher proportion of vessels were open in short samples. The two different rotor designs used for the flow-centrifuge method revealed similar vulnerability to cavitation. Only the bench dehydration or HRCT methods produced VCs that agreed with native levels of embolism and water potential values measured in the field.


Asunto(s)
Olea/fisiología , Agua/fisiología , Xilema/fisiología , Aire , Centrifugación , Deshidratación , Olea/anatomía & histología , Brotes de la Planta/anatomía & histología , Brotes de la Planta/fisiología , Xilema/anatomía & histología
19.
Tree Physiol ; 33(12): 1296-307, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24319028

RESUMEN

The drought tolerance of three economically important apple cultivars, Golden Delicious, Braeburn and Red Delicious, was analysed. The work offers insights into the hydraulics of these high-yield trees and indicates a possible hydraulic limitation of carbon gain. The hydraulic safety and efficiency of branch xylem and leaves were quantified, drought tolerance of living tissues was measured and stomatal regulation, turgor-loss point and osmotic potential at full turgor were analysed. Physiological measurements were correlated with anatomical parameters, such as conduit diameter, cell-wall reinforcement, stomatal density and stomatal pore length. Hydraulic safety differed considerably between the three cultivars with Golden Delicious being significantly less vulnerable to drought-induced embolism than Braeburn and Red Delicious. In Golden Delicious, leaves were less resistant than branch xylem, while in the other cultivars leaves were more resistant than branch xylem. Hydraulic efficiency and xylem anatomical measurements indicate differences in pit properties, which may also be responsible for variations in hydraulic safety. In all three cultivars, full stomatal closure occurred at water potentials where turgor had already been lost and severe loss of hydraulic conductivity as well as damage to living cells had been induced. The consequential negative safety margins pose a risk for hydraulic failure but facilitate carbon gain, which is further improved by the observed high stomatal conductance. Maximal stomatal conductance was clearly seen to be related to stomatal density and size. Based on our results, these three high-yield Malus domestica Borkh. cultivars span a wide range of drought tolerances, appear optimized for maximal carbon gain and, thus, all perform best under well-managed growing conditions.


Asunto(s)
Malus/fisiología , Transpiración de Plantas/fisiología , Agua/fisiología , Biomasa , Carbono/metabolismo , Sequías , Malus/crecimiento & desarrollo , Ósmosis , Hojas de la Planta/fisiología , Temperatura , Árboles , Xilema/fisiología
20.
Oecologia ; 164(2): 321-30, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20454977

RESUMEN

In the European Alps, Rhododendron ferrugineum grows in silicate regions while Rhododendron hirsutum is restricted to limestone areas. At geologically mixed sites, also hybrids (Rhododendron × intermedium) can occur. We hypothesised that hydraulic properties would vary with the species' habitat requirements. Key hydraulic parameters (vulnerability to drought-induced embolism, stomata regulation) and related wood characteristics as well as diurnal courses of water potential (Ψ) and stomatal conductance were analysed on plants growing on a silicate, a limestone and a geologically mixed site. Highest embolism resistance[Ψ at 50% loss of conductivity (Ψ (50)), -3.24 ± 0.18 MPa] and the highest safety margin between the Ψ at stomata closure (Ψ (SC) at 10% of maximal leaf conductance) and Ψ (50) were observed in R. hirsutum at the limestone site (1.57 MPa). Like in R. ferrugineum, hydraulic parameters indicated less resistance at the geologically mixed site. Highest Ψ (50) (-1.95 ± 0.12 MPa), corresponding to wide conduits and a reduced conduit wall reinforcement, was found in R. × intermedium. Diurnal courses indicated a rapid stomata closure in response to low Ψ in R. hirsutum and R. × intermedium. The plasticity in drought adaptation of R. hirsutum corresponds to its ability to colonise dry limestone areas. In contrast, hydraulic limitations of R. × intermedium may explain restrictions to rather moist sites. This study provides insight into the role of xylem hydraulics and stomata regulation in shrub water relations, interspecific and site-specific differences in drought adaptation, as well as effects of hybridisation on plant hydraulics.


Asunto(s)
Rhododendron/fisiología , Agua/metabolismo , Transporte Biológico , Ritmo Circadiano , Ecosistema , Ambiente , Estomas de Plantas/fisiología , Rhododendron/anatomía & histología , Rhododendron/metabolismo , Madera/anatomía & histología , Madera/metabolismo , Madera/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...